DocumentCode
549519
Title
A stabilized discrete empirical interpolation method for model reduction of electrical, thermal, and microelectromechanical systems
Author
Hochman, Amit ; Bond, Bradley N. ; White, Jacob K.
Author_Institution
Massachusetts Inst. of Technol., Cambridge, MA, USA
fYear
2011
fDate
5-9 June 2011
Firstpage
540
Lastpage
545
Abstract
We present a few modifications that stabilize nonlinear reduced order models generated by discrete empirical interpolation methods. We combine a different approach to linearization with a multipoint stabilization technique. The examples used to demonstrate our method´s effectiveness are a nonlinear transmission line, a micromachined switch, and a nonlinear thermal model for an RF amplifier.
Keywords
circuit stability; interpolation; linearisation techniques; micromachining; microswitches; nonlinear differential equations; radiofrequency amplifiers; reduced order systems; thermal analysis; RF amplifier; electrical system; linearization technique; microelectromechanical system; micromachined switch; multipoint stabilization technique; nonlinear reduced order model; nonlinear thermal model; nonlinear transmission line; stabilized discrete empirical interpolation method; thermal system; Interpolation; Jacobian matrices; Read only memory; Reduced order systems; Stability analysis; Training; Discrete Empirical Interpolation Method; Microelectromechanical Systems; Model Reduction;
fLanguage
English
Publisher
ieee
Conference_Titel
Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE
Conference_Location
New York, NY
ISSN
0738-100x
Print_ISBN
978-1-4503-0636-2
Type
conf
Filename
5981854
Link To Document