• DocumentCode
    595322
  • Title

    Keyword clustering for automatic categorization

  • Author

    Qinpei Zhao ; Rezaei, Mahdi ; Hao Chen ; Franti, Pasi

  • Author_Institution
    Sch. of Comput., Univ. of Eastern Finland, Joensuu, Finland
  • fYear
    2012
  • fDate
    11-15 Nov. 2012
  • Firstpage
    2845
  • Lastpage
    2848
  • Abstract
    Processing short texts is becoming a trend in information retrieval. Since the text has rarely external information, it is more challenging than document. In this paper, keyword clustering is studied for automatic categorization. To obtain semantic similarity of the keywords, a broad-coverage lexical resource WordNet is employed. We introduce a semantic hierarchical clustering. For automatic keyword categorization, a validity index for determining the number of clusters is proposed. The minimum value of the index indicates the potentially appropriate categorization. We show the result in experiments, which indicates the index is effective.
  • Keywords
    information retrieval; pattern clustering; automatic categorization; broad-coverage lexical resource WordNet; information retrieval; keyword clustering; semantic hierarchical clustering; semantic similarity; Clustering algorithms; Google; Humans; Indexes; Internet; Search engines; Semantics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition (ICPR), 2012 21st International Conference on
  • Conference_Location
    Tsukuba
  • ISSN
    1051-4651
  • Print_ISBN
    978-1-4673-2216-4
  • Type

    conf

  • Filename
    6460758