• DocumentCode
    603522
  • Title

    Solution of the Last Open Four-Colored Rectangle-Free Grid: An Extremely Complex Multiple-Valued Problem

  • Author

    Steinbach, B. ; Posthoff, C.

  • Author_Institution
    Inst. of Comput. Sci., Freiberg Univ. of Min. & Technol., Freiberg, Germany
  • fYear
    2013
  • fDate
    22-24 May 2013
  • Firstpage
    302
  • Lastpage
    309
  • Abstract
    It is a challenge in the multi-valued domain to solve problems that depend on a large number of variables, as large as possible. We selected for this paper the problem of rectangle-free colorings using four colors which could not be solved so far for the grids of the sizes 12 × 21 and 21 × 12. This problem depends on 12*21 = 252 four-valued variables. It is the last of so far unsolved rectangle-free grid problems for four colors. This paper aims at the solution of a multi-valued problem with an exceptionally high complexity. The search space for this finite problem is 4252 which is approximately 5.2 * 10151. A similar coloring problem was solved for the grid of the size 18 × 18 that relies on the extreme search space of approximately 1.1 * 10195. The construction of a cyclically reusable solution for a single color simplifies this search space approximately to 3.4 * 1097. Unfortunately, such a restriction to a single color is not possible in the case of a grid of the size 12 × 21. Hence, the complexity which must be handled in maintainable time grows additionally by a factor of more than 1054. Based on a very deep analysis of the properties of the problem we have constructed a strongly restricted SAT-model. This final model depends on 504 Boolean variables and 85.344 clauses. Using this SAT-instance we could calculate not only one solution but 38, 926 representatives of different permutation classes of four-colored rectangle-free grids of the size 12 × 21.
  • Keywords
    Boolean algebra; computability; computational complexity; graph colouring; Boolean variables; SAT-instance; SAT-model; complex multiple-valued problem; complexity; graph coloring; last open four-colored rectangle-free grid; multivalued domain; rectangle-free coloring; rectangle-free grid problems; search space; Bipartite graph; Color; Complexity theory; Educational institutions; Electronic mail; Image color analysis; Search problems; Boolean equation; Latin square; SAT-solver; four-valued coloring; rectangle-free grid;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Multiple-Valued Logic (ISMVL), 2013 IEEE 43rd International Symposium on
  • Conference_Location
    Toyama
  • ISSN
    0195-623X
  • Print_ISBN
    978-1-4673-6067-8
  • Electronic_ISBN
    0195-623X
  • Type

    conf

  • DOI
    10.1109/ISMVL.2013.51
  • Filename
    6524681