• DocumentCode
    617383
  • Title

    A hierarchical Bayesian M/EEG imagingmethod correcting for incomplete spatio-temporal priors

  • Author

    Stahlhut, C. ; Attias, H.T. ; Sekihara, Kensuke ; Wipf, David ; Hansen, Lars Kai ; Nagarajan, Srikantan S.

  • Author_Institution
    DTU Comput., Tech. Univ. of Denmark, Lyngby, Denmark
  • fYear
    2013
  • fDate
    7-11 April 2013
  • Firstpage
    560
  • Lastpage
    563
  • Abstract
    In this paper we present a hierarchical Bayesian model, to tackle the highly ill-posed problem that follows with MEG and EEG source imaging. Our model promotes spatiotemporal patterns through the use of both spatial and temporal basis functions. While in contrast to most previous spatio-temporal inverse M/EEG models, the proposed model benefits of consisting of two source terms, namely, a spatiotemporal pattern term limiting the source configuration to a spatio-temporal subspace and a source correcting term to pick up source activity not covered by the spatio-temporal prior belief. Both artificial data and real EEG data is used to demonstrate the efficacy of the model.
  • Keywords
    Bayes methods; electroencephalography; inverse problems; magnetoencephalography; medical image processing; spatiotemporal phenomena; EEG source imaging; MEG source imaging; artificial data; hierarchical Bayesian EEG imaging method; hierarchical Bayesian MEG imaging method; hierarchical Bayesian model; ill-posed problem; real EEG data; source activity; source configuration; source correcting term; spatial basis function; spatiotemporal inverse M/EEG model; spatiotemporal pattern; spatiotemporal prior belief; spatiotemporal subspace; temporal basis function; Bayes methods; Brain modeling; Computational modeling; Data models; Electroencephalography; Imaging; Inverse problems; EEG; MEG; inverse problem; spatio-temporal prior; variational Bayes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on
  • Conference_Location
    San Francisco, CA
  • ISSN
    1945-7928
  • Print_ISBN
    978-1-4673-6456-0
  • Type

    conf

  • DOI
    10.1109/ISBI.2013.6556536
  • Filename
    6556536