• DocumentCode
    66313
  • Title

    A MAP Approach for 1-Bit Compressive Sensing in Synthetic Aperture Radar Imaging

  • Author

    Xiao Dong ; Yunhua Zhang

  • Author_Institution
    Key Lab. of Microwave Remote Sensing, Center for Space Sci. & Appl. Res., Beijing, China
  • Volume
    12
  • Issue
    6
  • fYear
    2015
  • fDate
    Jun-15
  • Firstpage
    1237
  • Lastpage
    1241
  • Abstract
    In this letter, we propose a compressive sensing approach for synthetic aperture radar (SAR) imaging of sparse scenes with 1-bit-quantized data. Within the framework of maximum a posteriori estimation, we formulate the SAR image reconstruction problem as a sparse optimization problem and then solve it using a first-order primal-dual algorithm. The processing results of both simulated and real radar data show that our approach can eliminate the ghost target caused by 1-bit quantization in high signal-to-noise ratio situations and suppress the noisy background very well.
  • Keywords
    compressed sensing; image coding; image reconstruction; interference suppression; maximum likelihood estimation; natural scenes; optimisation; quantisation (signal); radar imaging; synthetic aperture radar; 1-bit compressive sensing; 1-bit quantization; MAP approach; SAR image reconstruction problem; first-order primal dual algorithm; maximum aposteriori estimation; noisy background suppression; radar data processing; signal-to-noise ratio; sparse optimization problem; sparse scenes; synthetic aperture radar imaging; Compressed sensing; Imaging; Quantization (signal); Radar imaging; Radar polarimetry; Synthetic aperture radar; 1-bit compressive sensing (CS); maximum a posteriori (MAP); sparsity; synthetic aperture radar (SAR);
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1545-598X
  • Type

    jour

  • DOI
    10.1109/LGRS.2015.2390623
  • Filename
    7042303