DocumentCode
70785
Title
How Correlations Influence Lasso Prediction
Author
Hebiri, M. ; Lederer, Johannes
Author_Institution
Univ. Paris-Est Marne-la-Vallee, Champs-sur-Marne, France
Volume
59
Issue
3
fYear
2013
fDate
Mar-13
Firstpage
1846
Lastpage
1854
Abstract
We study how correlations in the design matrix influence Lasso prediction. First, we argue that the higher the correlations, the smaller the optimal tuning parameter. This implies in particular that the standard tuning parameters, that do not depend on the design matrix, are not favorable. Furthermore, we argue that Lasso prediction works well for any degree of correlations if suitable tuning parameters are chosen. We study these two subjects theoretically as well as with simulations.
Keywords
eigenvalues and eigenfunctions; prediction theory; regression analysis; tuning; correlation influence Lasso prediction; design matrix; eigenvalue; optimal tuning parameter; Algorithm design and analysis; Correlation; Covariance matrix; Prediction algorithms; Standards; Tuning; Vectors; Correlations; Lars algorithm; Lasso; restricted eigenvalue; tuning parameter;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.2012.2227680
Filename
6355687
Link To Document