• DocumentCode
    70785
  • Title

    How Correlations Influence Lasso Prediction

  • Author

    Hebiri, M. ; Lederer, Johannes

  • Author_Institution
    Univ. Paris-Est Marne-la-Vallee, Champs-sur-Marne, France
  • Volume
    59
  • Issue
    3
  • fYear
    2013
  • fDate
    Mar-13
  • Firstpage
    1846
  • Lastpage
    1854
  • Abstract
    We study how correlations in the design matrix influence Lasso prediction. First, we argue that the higher the correlations, the smaller the optimal tuning parameter. This implies in particular that the standard tuning parameters, that do not depend on the design matrix, are not favorable. Furthermore, we argue that Lasso prediction works well for any degree of correlations if suitable tuning parameters are chosen. We study these two subjects theoretically as well as with simulations.
  • Keywords
    eigenvalues and eigenfunctions; prediction theory; regression analysis; tuning; correlation influence Lasso prediction; design matrix; eigenvalue; optimal tuning parameter; Algorithm design and analysis; Correlation; Covariance matrix; Prediction algorithms; Standards; Tuning; Vectors; Correlations; Lars algorithm; Lasso; restricted eigenvalue; tuning parameter;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2012.2227680
  • Filename
    6355687