• DocumentCode
    723754
  • Title

    Uncertainty quantification of exponential synchronization for a novel class of complex dynamical networks with hybrid TVD using PIPC

  • Author

    Lin Pan ; Voos, Holger ; Yumei Li ; Darouach, Mohamed ; Shujun Hu

  • Author_Institution
    Interdiscipl. Centre for Security, Reliability & Trust, Univ. of Luxembourg, Luxembourg, Luxembourg
  • fYear
    2015
  • fDate
    23-25 May 2015
  • Firstpage
    125
  • Lastpage
    130
  • Abstract
    This paper investigates the Uncertainty Quantification (UQ) of Exponential Synchronization (ES) problems for a new class of Complex Dynamical Networks (CDNs) with hybrid Time-Varying Delay (TVD) and Non-Time-Varying Delay (NTVD) nodes by using coupling Periodically Intermittent Pinning Control (PIPC) which has three switched intervals in every period. Based on Kronecker product rules, Lyapunov Stability Theory (LST), Cumulative Distribution Function (CDF), and PIPC method, the robustness of the control algorithm with respect to the value of the final time is studied. Moreover, we assume a normal distribution for the time and used the Stochastic Collocation (SC) method [1] with different values of nodes and collocation points to quantify the sensitivity. For different numbers of nodes, the results show that the ES errors converge to zero with a high probability. Finally, to verify the effectiveness of our theoretical results, Nearest-Neighbor Network (NNN) and Barabási-Albert Network (BAN) consisting of coupled non-delayed and delay Chen oscillators are studied and to demonstrate that the accuracies of the ES and PIPC are robust to variations of time.
  • Keywords
    Lyapunov methods; complex networks; convergence; delays; large-scale systems; normal distribution; periodic control; robust control; stochastic processes; switching systems (control); synchronisation; BAN; Barabási-Albert Network; CDF; CDN; Kronecker product rule; LST; Lyapunov stability theory; NNN; NTVD node; PIPC method; collocation points; complex dynamical network; control algorithm robustness; cumulative distribution function; delay Chen oscillator; error convergence; exponential synchronization problem; hybrid TVD; hybrid time-varying delay; nearest-neighbor network; nondelayed Chen oscillator; nontime-varying delay; normal distribution; periodically intermittent pinning control; probability; sensitivity quantification; stochastic collocation method; switched interval; time variation; uncertainty quantification; Artificial neural networks; Chaos; Couplings; Delays; Switches; Synchronization; Complex Dynamical Networks (CDNs); Exponential Synchronization (ES); Periodically Intermittent Pinning Control (PIPC); Time-varying Delay (TVD);
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control and Decision Conference (CCDC), 2015 27th Chinese
  • Conference_Location
    Qingdao
  • Print_ISBN
    978-1-4799-7016-2
  • Type

    conf

  • DOI
    10.1109/CCDC.2015.7161678
  • Filename
    7161678