• DocumentCode
    728120
  • Title

    Tensor regression for LTI subspace identification

  • Author

    Gunes, Bilal ; van Wingerden, Jan-Willem ; Verhaegen, Michel

  • Author_Institution
    Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands
  • fYear
    2015
  • fDate
    1-3 July 2015
  • Firstpage
    1131
  • Lastpage
    1136
  • Abstract
    The biggest bottleneck of Linear Parameter Varying (LPV) subspace identification methods is the unavoidable over-parametrization in its first, rank-revealing estimation step. This motivated us to look at less superfluous parametrizations for Linear Time Invariant (LTI) subspace methods which have the potential to be extended to the LPV case. In this paper, we propose a method based on tensor regression and Multiple Inputs Multiple Outputs (MIMO) canonical forms which has a less superfluous parametrization. The proposed method can be used to obtain consistent estimates with comparable variance to the over-parametrized linear regression estimates, but uses much less parameters. Additionally, the linearised variant of our proposed method is presented, which reduces the parameter count even more. The effectiveness of the proposed method is illustrated with a simulation example.
  • Keywords
    MIMO systems; linear parameter varying systems; linearisation techniques; parameter estimation; regression analysis; tensors; LPV subspace identification method; LTI subspace identification; LTI subspace method; MIMO canonical form; linear parameter varying; linear time invariant subspace method; linearised variant; multiple inputs multiple outputs canonical form; over-parametrized linear regression estimate; rank-revealing estimation step; tensor regression; Estimation; Linear regression; Linear systems; MIMO; Magnetic resonance imaging; Mathematical model; Tensile stress;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference (ACC), 2015
  • Conference_Location
    Chicago, IL
  • Print_ISBN
    978-1-4799-8685-9
  • Type

    conf

  • DOI
    10.1109/ACC.2015.7170885
  • Filename
    7170885