DocumentCode
728120
Title
Tensor regression for LTI subspace identification
Author
Gunes, Bilal ; van Wingerden, Jan-Willem ; Verhaegen, Michel
Author_Institution
Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands
fYear
2015
fDate
1-3 July 2015
Firstpage
1131
Lastpage
1136
Abstract
The biggest bottleneck of Linear Parameter Varying (LPV) subspace identification methods is the unavoidable over-parametrization in its first, rank-revealing estimation step. This motivated us to look at less superfluous parametrizations for Linear Time Invariant (LTI) subspace methods which have the potential to be extended to the LPV case. In this paper, we propose a method based on tensor regression and Multiple Inputs Multiple Outputs (MIMO) canonical forms which has a less superfluous parametrization. The proposed method can be used to obtain consistent estimates with comparable variance to the over-parametrized linear regression estimates, but uses much less parameters. Additionally, the linearised variant of our proposed method is presented, which reduces the parameter count even more. The effectiveness of the proposed method is illustrated with a simulation example.
Keywords
MIMO systems; linear parameter varying systems; linearisation techniques; parameter estimation; regression analysis; tensors; LPV subspace identification method; LTI subspace identification; LTI subspace method; MIMO canonical form; linear parameter varying; linear time invariant subspace method; linearised variant; multiple inputs multiple outputs canonical form; over-parametrized linear regression estimate; rank-revealing estimation step; tensor regression; Estimation; Linear regression; Linear systems; MIMO; Magnetic resonance imaging; Mathematical model; Tensile stress;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference (ACC), 2015
Conference_Location
Chicago, IL
Print_ISBN
978-1-4799-8685-9
Type
conf
DOI
10.1109/ACC.2015.7170885
Filename
7170885
Link To Document