• DocumentCode
    823219
  • Title

    Robust solutions of perturbed linear equations

  • Author

    Barmish, B. Ross

  • Author_Institution
    Yale University, New Haven, CT, USA
  • Volume
    22
  • Issue
    1
  • fYear
    1977
  • fDate
    2/1/1977 12:00:00 AM
  • Firstpage
    123
  • Lastpage
    124
  • Abstract
    A perturbed system of linear equalities \\langle a_{i},x \\rangle = b_{i}, i = 1,2,...,n;a_{i} \\inA_{i};b_{i},\\inB_{i};x\\inX (the sets Aiand the intervals Biprescribed a priori) is said to be robust if a solution vector x_{0}\\in X can be found resulting in \\langle a_{i},x_{0}\\rangle \\in B_{i} for all a_{i} \\in A_{i} and all i = 1, 2,...,n . A numerical "test for robustness" is developed. This test is seen to involve 2n parameters at most-even when the solution set X is an infinite-dimensional vector space.
  • Keywords
    Linear systems; Perturbation methods; Uncertain systems; Bismuth; Equations; Robustness; Sufficient conditions; Testing; Vectors;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.1977.1101417
  • Filename
    1101417