DocumentCode
830096
Title
Monotonic convergent iterative learning controller design based on interval model conversion
Author
Ahn, Hyo-Sung ; Moore, Kevin L. ; Chen, YangQuan
Author_Institution
Dept. of Electr. & Comput. Eng., Utah State Univ., Logan, UT, USA
Volume
51
Issue
2
fYear
2006
Firstpage
366
Lastpage
371
Abstract
This note presents a robust iterative learning controller design method for plants subject to interval model uncertainty in the A-matrix of their state-space description. First-order perturbation theory is used to find bounds on the eigenvalues and eigenvectors of the powers of A when A is an interval matrix. These bounds are then used for calculation of the interval uncertainty of the Markov matrix. The bounds on the Markov matrix are then used to design an iterative learning controller that ensures monotonic convergence for all systems in the interval plant.
Keywords
Markov processes; adaptive control; control system synthesis; eigenvalues and eigenfunctions; iterative methods; learning systems; robust control; state-space methods; Markov matrix; eigenvalues and eigenvectors; first-order perturbation theory; interval model conversion; monotonic convergence; monotonic convergent iterative learning controller design; robust control; state-space description; Control systems; Convergence; Design methodology; Eigenvalues and eigenfunctions; Iterative methods; Matrix converters; Motion control; Robust control; Robustness; Uncertainty; Interval conversion; iterative learning control; matrix perturbation; monotonic convergence;
fLanguage
English
Journal_Title
Automatic Control, IEEE Transactions on
Publisher
ieee
ISSN
0018-9286
Type
jour
DOI
10.1109/TAC.2005.863498
Filename
1593918
Link To Document