• DocumentCode
    857516
  • Title

    Batch map extensions of the kernel-based maximum entropy learning rule

  • Author

    Gautama, Temujin ; Van Hulle, Marc M.

  • Author_Institution
    Lab. voor Neuro en Psychofysiologie, Katholieke Univ. Leuven, Belgium
  • Volume
    17
  • Issue
    2
  • fYear
    2006
  • fDate
    3/1/2006 12:00:00 AM
  • Firstpage
    529
  • Lastpage
    532
  • Abstract
    In this letter, two batch-map extensions are described for the kernel-based maximum entropy learning rule (kMER). In the first, the weights are iteratively set to weighted component-wise medians, while in the second the generalized median is used, enabling kMER to process symbolic data. Simulations are performed to illustrate the extensions.
  • Keywords
    iterative methods; learning (artificial intelligence); maximum entropy methods; self-organising feature maps; batch map extensions; iterative method; kernel-based maximum entropy learning rule; symbolic data processing; weighted component-wise medians; Cooling; Educational programs; Entropy; Iterative algorithms; Neurons; Psychology; Temperature control; Terminology; Training data; Vector quantization; Batch map; generalized median; kMER; Algorithms; Artificial Intelligence; Computer Simulation; Decision Support Techniques; Entropy; Image Interpretation, Computer-Assisted; Models, Theoretical; Neural Networks (Computer); Numerical Analysis, Computer-Assisted; Pattern Recognition, Automated;
  • fLanguage
    English
  • Journal_Title
    Neural Networks, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1045-9227
  • Type

    jour

  • DOI
    10.1109/TNN.2006.871722
  • Filename
    1603639