• DocumentCode
    870986
  • Title

    Convergent 2-D Subspace Learning With Null Space Analysis

  • Author

    Xu, Dong ; Yan, Shuicheng ; Lin, Stephen ; Huang, Thomas S.

  • Author_Institution
    Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore
  • Volume
    18
  • Issue
    12
  • fYear
    2008
  • Firstpage
    1753
  • Lastpage
    1759
  • Abstract
    Recent research has demonstrated the success of supervised dimensionality reduction algorithms 2DLDA and 2DMFA, which are based on the image-as-matrix representation, in small sample size cases. To solve the convergence problem in 2DLDA and 2DMFA, we propose in this work two new schemes, called Null Space based 2DLDA (NS2DLDA) and Null Space based 2DMFA (NS2DMFA), and apply them to the challenging multi-view face recognition task. First, we convert each 2-D face image (matrix) into a vector and compute the first projection matrix P 1 from the null space of the intra-class scatter matrix, such that the samples from the same class are projected to the same point. Then the data are projected and reconstructed with P 1 . Finally, we re-organize the reconstructed datum into a matrix and then compute the second projection direction P 2, in the form of a Kronecker product of two matrices, by maximizing the inter-class scatter. A proof of algorithmic convergence is provided. The experiments on two benchmark multi-view face databases, the CMU PIE and FERET databases, demonstrate that NS2DLDA outperforms Fisherface, Null Space LDA (NSLDA) and 2DLDA. Additionally, NS2DMFA is also demonstrated to be more accurate than MFA and 2DMFA for face recognition.
  • Keywords
    data reduction; face recognition; image representation; learning (artificial intelligence); matrix algebra; 2D face image; 2DLDA; 2DMFA; Kronecker product; algorithmic convergence; convergence problem; convergent 2D subspace learning; image-as-matrix representation; intraclass scatter matrix; multiview face recognition; null space analysis; projection matrix; second projection direction; supervised dimensionality reduction; 2DLDA; 2DMFA; LDA; MFA; multiview face recognition; null space LDA;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems for Video Technology, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1051-8215
  • Type

    jour

  • DOI
    10.1109/TCSVT.2008.2005799
  • Filename
    4630763