• DocumentCode
    983510
  • Title

    Hermite-Gaussian-like eigenvectors of the discrete Fourier transform matrix based on the direct utilization of the orthogonal projection matrices on its eigenspaces

  • Author

    Hanna, Magdy Tawfik ; Seif, Nabila Philip Attalla ; Ahmed, Waleed Abd El Maguid

  • Author_Institution
    Dept. of Eng. Math. & Phys., Fayoum Univ.
  • Volume
    54
  • Issue
    7
  • fYear
    2006
  • fDate
    7/1/2006 12:00:00 AM
  • Firstpage
    2815
  • Lastpage
    2819
  • Abstract
    A new version is proposed for the Gram-Schmidt algorithm (GSA), the orthogonal procrustes algorithm (OPA) and the sequential orthogonal procrustes algorithm (SOPA) for generating Hermite-Gaussian-like orthonormal eigenvectors for the discrete Fourier transform matrix F. This version is based on the direct utilization of the orthogonal projection matrices on the eigenspaces of matrix F rather than the singular value decomposition of those matrices for the purpose of generating initial orthonormal eigenvectors. The proposed version of the algorithms has the merit of achieving a significant reduction in the computation time
  • Keywords
    Gaussian processes; eigenvalues and eigenfunctions; singular value decomposition; Gram-Schmidt algorithms; Hermite-Gaussian-like eigenvectors; discrete Fourier transform matrix; eigenspaces; orthogonal projection matrix; sequential orthogonal procrustes algorithm; singular value decomposition; Difference equations; Differential equations; Discrete Fourier transforms; Eigenvalues and eigenfunctions; Fourier transforms; Mathematics; Matrix decomposition; Physics; Singular value decomposition; Symmetric matrices; Discrete fractional Fourier transform; Gram–Schmidt algorithm (GSA); Hermite–Gaussian-like orthonormal eigenvectors; orthogonal procrustes algorithm (OPA); projection matrices; sequential orthogonal procrustes algorithm (SOPA);
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2006.873497
  • Filename
    1643920