Title of article :
Mesoscopic modelling of the interaction of infrared lasers with composite materials: an application to human dental enamel
Author/Authors :
A. Vila Verde، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
5
From page :
410
To page :
414
Abstract :
The mesostructure and composition of composite materials determine their mechanical, optical and thermal properties and, consequently, their response to incident radiation. We have developed general finite element models of porous composite materials under infrared radiation to examine the influence of pore size on one of the determining parameters of the stress distribution in the material: the temperature distribution.We apply them to the specific case of human dental enamel, a material which has nanometer scale pores containing water/organic, and predict the maximum temperature reached after a single 0.35 ms laser pulse of sub-ablative fluence by two lasers: Er:YAG (2.9 mm) and CO2 (10.6 mm). For the Er:YAG laser, the results imply a strong dependence of the maximum temperature reached at the pore on the area-to-volume ratio of the pore, whereas there is little such dependence for CO2 lasers. Thus, CO2 lasers may produce more reproducible results than Er:YAG lasers when it comes to enamel ablation, which may be of significant interest during clinical practice. More generally, when ablating composite materials by infrared lasers researchers should account for the material’s microstructure and composition when designing experiments or interpreting results, since a more simplistic continuum approach may not be sufficient to explain differences observed during ablation of materials with similar optical properties or of the same material but using different wavelengths
Keywords :
Dental enamel , Laser ablation , Finite element modelling , Er:YAG laser , CO2 laser , Mesoscopic modelling
Journal title :
Applied Surface Science
Serial Year :
2004
Journal title :
Applied Surface Science
Record number :
1000475
Link To Document :
بازگشت