Author/Authors :
M.، Quartulli, نويسنده , , M.، Datcu, نويسنده , , H.، Daschiel, نويسنده , , A.، Pelizzari, نويسنده , , A.، Galoppo, نويسنده , , A.، Colapicchioni, نويسنده , , M.، Pastori, نويسنده , , K.، Seidel, نويسنده , , P.G.، Marchetti, نويسنده , , Dapos، نويسنده , , S.، Elia, نويسنده ,
Abstract :
In this paper, we demonstrate the concepts of a prototype of a knowledge-driven content-based information mining system produced to manage and explore large volumes of remote sensing image data. The system consists of a computationally intensive offline part and an online interface. The offline part aims at the extraction of primitive image features, their compression, and data reduction, the generation of a completely unsupervised image content-index, and the ingestion of the catalogue entry in the database management system. Then, the userʹs interests-semantic interpretations of the image content-are linked with Bayesian networks to the content-index. Since this calculation is only based on a few training samples, the link can be computed online, and the complete image archive can be searched for images that contain the defined cover type. Practical applications exemplified with different remote sensing datasets show the potential of the system.
Keywords :
unsupervised segmentation , multitemporal synthetic aperture radar (SAR) , multiband optical , Data fusion