Title of article :
Photocatalytic performance of cylindrical reactor inserted with UV light-emitting-diodes for purification of low-level toxic volatile organic compounds
Author/Authors :
Wan K. Jo، نويسنده , , Hyun J. Kang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
The present study investigated the photocatalytic performance of a cylindrical reactor inserted with UV light-emitting-diodes for the decomposition of low-level (0.1 ppm) gas-phase organic compounds (benzene, toluene, ethyl benzene and xylene (BTEX)). The morphological and optical properties of photocatalysts (Degussa P-25 TiO2) baked at different temperatures were determined using a range of spectral instruments. The photocatalyst baked at 350 °C exhibited the highest conversion efficiencies for both benzene and toluene (81 and ∼100%, respectively). The conventional lamp showed a higher conversion efficiency for benzene compared to the 380-nm UV-LED and a higher conversion efficiency for benzene and toluene than the 365-nm UV-LED. However, the ratios of conversion efficiency to electric power consumption were 2.5–3.0 times higher for the latter light source than the former source. Moreover, as the residence time increased from 0.2 to 1.2 min, the average conversion efficiencies for BTEX of the 3-h photocatalytic process increased from nearly zero to 81%, 7 to nearly 100%, 20 to nearly 100%, and 29–30 to nearly 100%, respectively. The cylindrical photocatalytic reactor inserted with UV-LEDs could be energy-efficiently applied for the decomposition of low-level toxic compounds after optimization of the operating conditions.
Keywords :
Photocatalytic conversion , Electric power consumption , Energy-efficiency , Baking temperature , Residence time
Journal title :
Applied Surface Science
Journal title :
Applied Surface Science