Title of article :
ZnO nanowire-based glucose biosensors with different coupling agents
Author/Authors :
Juneui Jung، نويسنده , , Sangwoo Lim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
6
From page :
24
To page :
29
Abstract :
ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis–Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 μA cm−2 mM−1) and the lowest Michaelis–Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of Csingle bondN groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.
Keywords :
ZnO nanowire , Immobilization , Biosensors , Surface
Journal title :
Applied Surface Science
Serial Year :
2013
Journal title :
Applied Surface Science
Record number :
1006322
Link To Document :
بازگشت