Title of article :
Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain
Author/Authors :
P.، Sajda, نويسنده , , S.، Du, نويسنده , , T.R.، Brown, نويسنده , , R.، Stoyanova, نويسنده , , D.C.، Shungu, نويسنده , , Mao، Xiangling نويسنده , , L.C.، Parra, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
-1452
From page :
1453
To page :
0
Abstract :
We present an algorithm for blindly recovering constituent source spectra from magnetic resonance (MR) chemical shift imaging (CSI) of the human brain. The algorithm, which we call constrained nonnegative matrix factorization (cNMF), does not enforce independence or sparsity, instead only requiring the source and mixing matrices to be nonnegative. It is based on the nonnegative matrix factorization (NMF) algorithm, extending it to include a constraint on the positivity of the amplitudes of the recovered spectra. This constraint enables recovery of physically meaningful spectra even in the presence of noise that causes a significant number of the observation amplitudes to be negative. We demonstrate and characterize the algorithmʹs performance using /sup 31/P volumetric brain data, comparing the results with two different blind source separation methods: Bayesian spectral decomposition (BSD) and nonnegative sparse coding (NNSC). We then incorporate the cNMF algorithm into a hierarchical decomposition framework, showing that it can be used to recover tissue-specific spectra given a processing hierarchy that proceeds coarse-to-fine. We demonstrate the hierarchical procedure on /sup 1/H brain data and conclude that the computational efficiency of the algorithm makes it well-suited for use in diagnostic work-up.
Keywords :
Power-aware
Journal title :
IEEE Transactions on Medical Imaging
Serial Year :
2004
Journal title :
IEEE Transactions on Medical Imaging
Record number :
100760
Link To Document :
بازگشت