Title of article :
CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines
Author/Authors :
Wu، Gang نويسنده , , E.، Chang, نويسنده , , Goh، Kingshy نويسنده , , G.، Sychay, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-25
From page :
26
To page :
0
Abstract :
We propose a content-based soft annotation (CBSA) procedure for providing images with semantical labels. The annotation procedure starts with labeling a small set of training images, each with one single semantical label (e.g., forest, animal, or sky). An ensemble of binary classifiers is then trained for predicting label membership for images. The trained ensemble is applied to each individual image to give the image multiple soft labels, and each label is associated with a label membership factor. To select a base binary-classifier for CBSA, we experiment with two learning methods, support vector machines (SVMs) and Bayes point machines (BPMs), and compare their class-prediction accuracy. Our empirical study on a 116-category 25Kimage set shows that the BPM-based ensemble provides better annotation quality than the SVM-based ensemble for supporting multimodal image retrievals.
Keywords :
heat transfer , natural convection , Analytical and numerical techniques
Journal title :
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
Record number :
100987
Link To Document :
بازگشت