Title of article :
Optimization of VI/II pressure ratio in ZnTe growth on GaAs(0 0 1) by molecular beam epitaxy
Author/Authors :
Jie Zhao، نويسنده , , Yiping Zeng، نويسنده , , Chao Liu، نويسنده , , Lijie Cui، نويسنده , , Yanbo Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
6881
To page :
6886
Abstract :
ZnTe epilayers were grown on GaAs(0 0 1) substrates by molecular beam epitaxy (MBE) at different VI/II beam equivalent pressure (BEP) ratios (RVI/II) in a wide range of 0.96–11 with constant Zn flux. Based on in situ reflection high-energy electron diffraction (RHEED) observation, two-dimensional (2D) growth mode can be formed by increasing the RVI/II to 2.8. The Te/Zn pressure ratios lower than 4.0 correspond to Zn-rich growth state, while the ratios over 6.4 correspond to Te-rich one. The Zn sticking coefficient at various VI/II ratios are derived by the growth rate measurement. The ZnTe epilayer grown at a RVI/II of 6.4 displays the narrowest full-width at half-maximum (FWHM) of double-crystal X-ray rocking curve (DCXRC) for (0 0 4) reflection. Atomic force microscopy (AFM) characterization shows that the grain size enlarges drastically with the RVI/II. The surface root-mean-square (RMS) roughness decreases firstly, attains a minimum of 1.14 nm at a RVI/II of 4.0 and then increases at higher ratios. It is suggested that the most suitable RVI/II be controlled between 4.0 and 6.4 in order to grow high-quality ZnTe epitaxial thin films.
Keywords :
Molecular beam epitaxy , Reflection high-energy electron diffraction , X-ray diffraction , atomic force microscopy , ZnTe
Journal title :
Applied Surface Science
Serial Year :
2010
Journal title :
Applied Surface Science
Record number :
1013124
Link To Document :
بازگشت