Title of article
Development of cholesterol biosensor with high sensitivity using dual-enzyme immobilization into the mesoporous silica materials
Author/Authors
Kazuki Murai، نويسنده , , Katsuya Kato، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2011
Pages
8
From page
1725
To page
1732
Abstract
Mesoporous silica (MPS) materials with different pore diameters were synthesized by a sol–gel method where organic templates such as cationic surfactant (cetyltrimethylammonium bromide) and triblock co-polymer of (poly(ethylene glycol)–poly(propylene glycol)–poly(ethylene glycol) (Pluronic P123, EO20PO70EO20)), were used. MPS surface was organo-functionalized using a silane coupling reagent (ethyl-, phenyl-, or 3-mercaptpropyltriethoxysilane). Dual-enzyme, cholesterol esterase (10.0 nm × 5.4 nm × 11.0 nm) and cholesterol oxidase (6.8 nm × 8.5 nm × 8.8 nm), was immobilized on MPS materials by physical adsorption. Amount of dual-enzyme immobilized on all MPS materials, having a different pore size (2.7, 6.4, 12.4, 14.7, and 22.6 nm), and organo-functionalized MPS was similar (CE: 1.5 mg/mg silica and CO: 0.01 mg/mg silica). High activity of dual-enzyme was obtained by adjacently immobilizing on MPS materials. Its activity on MPS-2 (pore diameter: 6.4 nm) or MPS-5 (pore diameter: 22.6 nm) showed approximately 60% of native activity. Moreover, dual-enzyme immobilized on MPS with highly hydrophobic organo-functional groups (phenyl- or mercaptopropyl-group) exhibited higher activity than that on no-substituted MPS. Relative activity of dual-enzyme immobilized on organo-functionalized MPS-2 increased from 58% to 93%, under the optimum conditions.
Keywords
cholesterol , Biosensor , enzyme , Immobilization , Mesoporous silica
Journal title
Applied Surface Science
Serial Year
2011
Journal title
Applied Surface Science
Record number
1015422
Link To Document