Title of article :
Large-Scale Structural Analysis of the Classical Human Protein Tyrosine Phosphatome
Author/Authors :
Alastair J. Barr، نويسنده , , Emilie Ugochukwu، نويسنده , , Wen Hwa Lee، نويسنده , , Oliver N.F. King، نويسنده , , Panagis Filippakopoulos، نويسنده , , Ivan Alfano، نويسنده , , Pavel Savitsky، نويسنده , , Nicola A. Burgess-Brown، نويسنده , , Susanne Müller، نويسنده , , Stefan Knapp، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2009
Pages :
12
From page :
352
To page :
363
Abstract :
Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a comprehensive analysis of the classical PTP family. Despite their largely conserved fold, surface properties of PTPs are strikingly diverse. A potential secondary substrate-binding pocket is frequently found in phosphatases, and this has implications for both substrate recognition and development of selective inhibitors. Structural comparison identified four diverse catalytic loop (WPD) conformations and suggested a mechanism for loop closure. Enzymatic assays revealed vast differences in PTP catalytic activity and identified PTPD1, PTPD2, and HDPTP as catalytically inert protein phosphatases. We propose a “head-to-toe” dimerization model for RPTPγ/ζ that is distinct from the “inhibitory wedge” model and that provides a molecular basis for inhibitory regulation. This phosphatome resource gives an expanded insight into intrafamily PTP diversity, catalytic activity, substrate recognition, and autoregulatory self-association.
Journal title :
CELL
Serial Year :
2009
Journal title :
CELL
Record number :
1019604
Link To Document :
بازگشت