Title of article :
A Synthetic Genetic Edge Detection Program
Author/Authors :
Jeffrey J. Tabor، نويسنده , , Howard M. Salis، نويسنده , , Zachary Booth Simpson، نويسنده , , Aaron A. Chevalier، نويسنده , , Anselm Levskaya، نويسنده , , Edward M. Marcotte، نويسنده , , Christopher A. Voigt، نويسنده , , Andrew D. Ellington، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2009
Pages :
10
From page :
1272
To page :
1281
Abstract :
Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.
Journal title :
CELL
Serial Year :
2009
Journal title :
CELL
Record number :
1019813
Link To Document :
بازگشت