Title of article :
Delineation of Joint Molecule Resolution Pathways in Meiosis Identifies a Crossover-Specific Resolvase
Author/Authors :
Kseniya Zakharyevich، نويسنده , , Shangming Tang، نويسنده , , Yunmei Ma، نويسنده , , Neil Hunter، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2012
Pages :
14
From page :
334
To page :
347
Abstract :
At the final step of homologous recombination, Holliday junction-containing joint molecules (JMs) are resolved to form crossover or noncrossover products. The enzymes responsible for JM resolution in vivo remain uncertain, but three distinct endonucleases capable of resolving JMs in vitro have been identified: Mus81-Mms4(EME1), Slx1-Slx4(BTBD12), and Yen1(GEN1). Using physical monitoring of recombination during budding yeast meiosis, we show that all three endonucleases are capable of promoting JM resolution in vivo. However, in mms4 slx4 yen1 triple mutants, JM resolution and crossing over occur efficiently. Paradoxically, crossing over in this background is strongly dependent on the Blooms helicase ortholog Sgs1, a component of a well-characterized anticrossover activity. Sgs1-dependent crossing over, but not JM resolution per se, also requires XPG family nuclease Exo1 and the MutLγ complex Mlh1-Mlh3. Thus, Sgs1, Exo1, and MutLγ together define a previously undescribed meiotic JM resolution pathway that produces the majority of crossovers in budding yeast and, by inference, in mammals.
Journal title :
CELL
Serial Year :
2012
Journal title :
CELL
Record number :
1021139
Link To Document :
بازگشت