Title of article :
XBP-1 Is a Cell-Nonautonomous Regulator of Stress Resistance and Longevity
Author/Authors :
Rebecca C. Taylor، نويسنده , , Andrew Dillin، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2013
Pages :
13
From page :
1435
To page :
1447
Abstract :
The ability to ensure proteostasis is critical for maintaining proper cell function and organismal viability but is mitigated by aging. We analyzed the role of the endoplasmic reticulum unfolded protein response (UPRER) in aging of C. elegans and found that age-onset loss of ER proteostasis could be reversed by expression of a constitutively active form of XBP-1, XBP-1s. Neuronally derived XBP-1s was sufficient to rescue stress resistance, increase longevity, and activate the UPRER in distal, non-neuronal cell types through a cell-nonautonomous mechanism. Loss of UPRER signaling components in distal cells blocked cell-nonautonomous signaling from the nervous system, thereby blocking increased longevity of the entire animal. Reduction of small clear vesicle (SCV) release blocked nonautonomous signaling downstream of xbp-1s, suggesting that the release of neurotransmitters is required for this intertissue signaling event. Our findings point toward a secreted ER stress signal (SERSS) that promotes ER stress resistance and longevity.
Journal title :
CELL
Serial Year :
2013
Journal title :
CELL
Record number :
1021764
Link To Document :
بازگشت