Title of article :
Electrochemical characteristics of conductive carbon cement as matrix for chemically modified electrodes
Author/Authors :
Xinjian Huang، نويسنده , , J.J. Pot، نويسنده , , W.Th. Kok، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Abstract :
Conductive carbon cement (CCC) was evaluated as matrix material for the preparation of electrodes bulk-modified with electrocatalysts. For pure CCC electrodes the background current characteristics were examined. In acidic or neutral phosphate buffers the useful electrode potential range was from −0.3 to + 1.0 V vs. SCE, while in 0.1 mol 1−1 NaOH it was from −0.3 to + 0.7 V. The electrochemical reversibility of CCC electrodes was examined by measuring the standard rate constants for the reduction of hexacyanoferrate (III) and the oxidation of hydroquinone, using cyclic voltammetry (CV) and rotating disk experiments. The reversibility of a CCC electrode was comparable with that of a freshly polished glassy carbon electrode and better than that of carbon paste electrodes. CCC was used as matrix for the preparation of electrodes bulk-modified with cuprous oxide and cobalt phthalocyanine (CoPC). With a Cu2O-CCC electrode the oxidation potential of glucose, which shows sluggish kinetics at unmodified carbon electrodes, was strongly reduced. The kinetics of the mediated glucose oxidation has been studied with a rotating disk electrode. It was shown that at glucose concentrations higher than approximately 1 mmol l−1 the electrochemical regeneration of the catalyst becomes rate-determining. The Cu2O-CCC modified electrode has been applied with a constant potential in flow-injection analysis for the determination of glucose. The long-term stability of the electrode was studied; repeated injections of a glucose solution during a period of 6 h yielded a relative standard deviation of the peak height of 1.8% (n = 57). In CV experiments the electrocatalytic activity of CoPC was shown for the oxidation of various compounds such as penicillamine, hydrazine and bile acids. Application of the CoPC-CCC electrode for the detection of bile acids in flow-through detection with a constant or pulsed potential failed, due to a rapid deactivation of the electrode.
Keywords :
Cyclic voltammetry , Conductive carbon cement , Chemically modified electrodes , Cuprous oxide , Bile acids , Cobalt phthalocyanine , Carbohydrates
Journal title :
Analytica Chimica Acta
Journal title :
Analytica Chimica Acta