Title of article :
Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks Original Research Article
Author/Authors :
X.J. Yao، نويسنده , , A. Panaye، نويسنده , , J.P. Doucet، نويسنده , , H.F. Chen، نويسنده , , R.S. Zhang، نويسنده , , B.T. Fan، نويسنده , , M.C. Liu، نويسنده , , Z.D. Hu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
15
From page :
259
To page :
273
Abstract :
The performance and predictive capability of support vector machine (SVM) and radial basis function neural network (RBFNN) for classification problems in QSAR/QSPR were investigated and compared with several other classification methods such as linear discriminant analysis (LDA) and nonlinear discriminate analysis (NLDA). In the present study, two different data sets are evaluated. The first one involves the classification of four action modes of 221 phenols and the second investigation deals with the classification of the three narcosis mechanism of aquatic toxicity for 194 organic compounds. In both cases, the predictive ability of the SVM model is comparable or superior to those obtained by LDA, NLDA and RBFNN. The obtained results indicate that the SVM model with the RBF kernel function can be used as an alternative tool for classification problems in QSAR/QSPR.
Keywords :
Phenols , Narcosis mechanism , Toxicity , Support vector machine , classification , Radial basis function neural network
Journal title :
Analytica Chimica Acta
Serial Year :
2005
Journal title :
Analytica Chimica Acta
Record number :
1030580
Link To Document :
بازگشت