Title of article :
A new approach for simultaneous determination of Co(II), Ni(II), Cu(II) and Pd(II) using 2-thiophenaldehyde-3-thiosemicarbazone as reagent by solid phase microextraction–high performance liquid chromatography Original Research Article
Author/Authors :
Varinder Kaur، نويسنده , , Jatinder Singh Aulakh، نويسنده , , Ashok Kumar Malik، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
7
From page :
44
To page :
50
Abstract :
A new method is proposed herein for the sorption, separation and simultaneous determination of Co(II), Ni(II), Cu(II) and Pd(II) using 2-thiophenaldehyde-3-thiosemicarbazone (TPTS) as a reagent by solid phase microextraction–high performance liquid chromatography–UV detection. The method is based upon the sorption of metal complexes on polydimethylsiloxane (PDMS) fiber from aqueous solution followed by desorption in the desorption chamber of solid phase microextraction–high performance liquid chromatography (SPME–HPLC) interface. Reversed phase high performance liquid chromatography using acetonitrile:water (65:35) as an eluent on a C18 column has been used to achieve the separation. The effects of agitation, addition of salts, extraction time and desorption time are examined to obtain optimized conditions. The detection limits for Co(II), Ni(II), Cu(II) and Pd(II) are 9, 6, 1 and 7 ng L−1 based on 3σ of blank response. The precision is calculated to be less than 3.5% (R.S.D.) for all species. A 10 time enhancement in the signal is observed for SPME when compared with direct analysis. The method is successfully applied to several synthetic mixtures without interference from other common metal ions such as Mo(VI), V(V), Ag(I), Sn(IV), Cd(II), Zn(II), Pb(II), Cr(III) and Cr(VI). The proposed method is tested for the determination of Co(II), Ni(II), Cu(II) and Pd(II) in alloys and water samples spiked with these metal ions.
Journal title :
Analytica Chimica Acta
Serial Year :
2007
Journal title :
Analytica Chimica Acta
Record number :
1031269
Link To Document :
بازگشت