Title of article :
Feature selection for hierarchical clustering Original Research Article
Author/Authors :
F. Questier، نويسنده , , B. Walczak، نويسنده , , D.L. Massart b، نويسنده , , C. Boucon، نويسنده , , S. de Jong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
Feature selection is a valuable technique in data analysis for information-preserving data reduction. This paper describes a feature selection approach for hierarchical clustering based on genetic algorithms using a fitness function that tries to minimize the difference between the dissimilarity matrix of the original feature set and the one of the reduced feature sets. Clustering trees based on reduced feature sets are comparable with those based on the complete feature set. Special measures to favor small reduced feature sets are discussed.
Keywords :
Feature selection , Genetic algorithms , Hierarchical clustering
Journal title :
Analytica Chimica Acta
Journal title :
Analytica Chimica Acta