Author/Authors :
Qin Lu، نويسنده , , Greg E. Collins، نويسنده , , Matthew Smith، نويسنده , , Joseph Wang، نويسنده ,
Abstract :
A capillary electrophoresis (CE) microchip is utilized for the sensitive separation and detection of three trinitroaromatic explosives: 1,3,5-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB) and 2,4,6-trinitrophenyl-N-methylnitramine (tetryl), in the presence of 10 other explosives and explosive derivatives in nonaqueous electrolyte (acetonitrile/methanol 87.5/12.5 (v/v), 2.5 mM NaOH, 1 mM sodium dodecyl sulfate (SDS)). The chemical reaction of bases, e.g. hydroxide or methoxide ions, with trinitroaromatic compounds forms red colored derivatives that can be easily detected using a green light emitting diode (LED) on the microchip. Two surfactants bearing opposite charge, cetyltrimethylammonium bromide (CTAB) and SDS are compared with respect to their effect on separation times, detection limits and resolving powers for separating these explosives. All microchip separations were achieved in <20 s. In the absence of solid phase extraction (SPE), the detection limits obtained for the trinitroaromatic explosives were as follows: TNB, 60 μg/l; TNT, 160 μg/l and tetryl, 200 μg/l. By coupling the microchip separation with ex situ SPE, the detection limits for detecting these three explosives in seawater were lowered by 240 to more than 1000 times: TNB, 0.25 μg/l; TNT, 0.34 μg/l and tetryl, 0.19 μg/l.
Keywords :
Microchip , Capillary electrophoresis , Explosives , Nonaqueous , Solid phase extraction