Title of article :
Analysis of variance–principal component analysis: A soft tool for proteomic discovery Original Research Article
Author/Authors :
Peter de B. Harrington، نويسنده , , Nancy E. Vieira، نويسنده , , Jimmy Espinoza، نويسنده , , Jyh Kae Nien، نويسنده , , Roberto Romero، نويسنده , , Alfred L. Yergey، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
10
From page :
118
To page :
127
Abstract :
A soft tool for detection of biomarkers in high dimensional data sets has been developed. The tool combines analysis of variance (ANOVA) and principal component analysis (PCA). Covariations are separated using ANOVA into main effects and interaction. The covariances for each effect are combined with the pure error and subjected to PCA. If the main effect is significant compared to the residual error, the first principal component will span this source of variation. This technique avoids rotation of the principal components and when significant the variable loadings are amenable to interpretation. ANOVA–PCA is demonstrated as a tool for optimization of a proteomic assay for biomarkers. Two independent sets of matrix assisted laser desorption/ionization-mass spectra (MALDI-MS) were collected from amniotic fluids. These studies gave consistent biomarkers for premature delivery.
Keywords :
Amniotic fluid , Analysis of variance–principal component analysis , Premature delivery , MALDI-MS , Proteomic biomarker , Hotelling T2 , mass spectrometry , ANOVA–PCA , Matrix-assisted laser desorption/ionization
Journal title :
Analytica Chimica Acta
Serial Year :
2005
Journal title :
Analytica Chimica Acta
Record number :
1034928
Link To Document :
بازگشت