• Title of article

    Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels

  • Author/Authors

    Mounir Boudouh، نويسنده , , Hasna Louahlia-Gualous، نويسنده , , Michel De Labachelerie، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    13
  • From page
    2619
  • To page
    2631
  • Abstract
    This paper reports an experimental study on convective boiling heat transfer of nanofluids and de-ionized water flowing in a multichannel. The test copper plate contains 50 parallel rectangular minichannels of hydraulic diameter 800 μm. Experiments were performed to characterize the local heat transfer coefficients and surface temperature using copper–water nanofluids with very small nanoparticles concentration. Axial distribution of local heat transfer is estimated using a non-intrusive method. Only responses of thermocouples located inside the wall are used to solve inverse heat conduction problem. It is shown that the distribution of the local heat flux, surface temperature, and local heat transfer coefficient is dependent on the axial location and nanoparticles concentration. The local heat transfer coefficients estimated inversely are close to those determined from the correlation of Kandlikar and Balasubramanian [An extension of the flow boiling correlation to transition, laminar and deep laminar flows in minichannels and microchannels, Heat Transfer Eng. 25 (3) (2004) 86–93.] for boiling water. It is shown that the local heat flux, local vapor quality, and local heat transfer coefficient increase with copper nanoparticles concentration. The surface temperature is high for de-ionized water and it decreases with copper nanoparticles concentration.
  • Keywords
    nanofluid , Minichannel , Flow boiling , local heat transfer , Nanoparticles--------------------------------------------------------------------------------
  • Journal title
    Applied Thermal Engineering
  • Serial Year
    2010
  • Journal title
    Applied Thermal Engineering
  • Record number

    1045334