Title of article :
Increase of spin dephasing times in a 2D electron system with degree of initial spin polarization
Author/Authors :
D. Stich، نويسنده , , T. Korn، نويسنده , , R. Schulz، نويسنده , , D. Schuh، نويسنده , , W. Wegscheider، نويسنده , , Jan C. Schuller، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
3
From page :
1545
To page :
1547
Abstract :
We report on time-resolved Faraday/Kerr rotation measurements on a high-mobility 2D electron system. A variable initial spin polarization is created in the sample by a circularly polarized pump pulse, and the spin polarization is tracked by measuring the Faraday/Kerr rotation of a time-delayed probe pulse. By varying the pump intensity, the initial spin polarization is changed from the low-polarization limit to a polarization degree of several percent. The observed spin dephasing time increases from less than 20 ps to more than 200 ps as the initial spin polarization is increased. To exclude sample heating effects, additional measurements with constant pump intensity and variable degree of circular polarization are performed. The results confirm the theoretical prediction by Weng and Wu [Phys. Rev. B 68 (2003) 075312] that the spin dephasing strongly depends on the initial spin polarization degree. The microscopic origin for this is the Hartree–Fock term in the Coulomb interaction, which acts as an effective out-of plane magnetic field.
Keywords :
Heterostructures , 2D electron system , Spin dephasing
Journal title :
Physica E Low-dimensional Systems and Nanostructures
Serial Year :
2008
Journal title :
Physica E Low-dimensional Systems and Nanostructures
Record number :
1047131
Link To Document :
بازگشت