Title of article :
Critical parameters for the one-dimensional systems with long-range correlated disorder
Author/Authors :
Yi Zhao، نويسنده , , Suqing Duan، نويسنده , , Wei Zhang، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2009
Pages :
6
From page :
1425
To page :
1430
Abstract :
We study the metal–insulator transition in a tight-binding one-dimensional (1D) model with long-range correlated disorder. In the case of diagonal disorder with site energy within [−W/2,W/2] and having a power-law spectral density S(k)∝k−α, we investigate the competition between the disorder and correlation. Using the transfer-matrix method and finite-size scaling analysis, we find out that there is a finite range of extended eigenstates for α>2, and the mobility edges are at ±Ec=±|2−W/2|. Furthermore, we find the critical exponent ν of localization length (ξ∼|E−Ec|−ν) to be ν=1+1.4e2−α. Thus our results indicate that the disorder strength W determines the mobility edges and the degree of correlation α determines the critical exponents.
Keywords :
Correlated disorder , Critical parameters , Mobility edges , Critical exponents
Journal title :
Physica E Low-dimensional Systems and Nanostructures
Serial Year :
2009
Journal title :
Physica E Low-dimensional Systems and Nanostructures
Record number :
1048193
Link To Document :
بازگشت