Title of article :
Chemically enriched graphene-based switching devices: A novel principle driven by impurity-induced quasibound states and quantum coherence
Author/Authors :
Stephan Roche، نويسنده , , Blanca Biel، نويسنده , , Alessandro Cresti، نويسنده , , François Triozon، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2012
Abstract :
In this work, we discuss the possibility of engineering a novel type of graphene field effect transistor, based on the creation of a giant electron–hole transport asymmetry under proper conditions of doping density and system geometry. The resulting chemically modified devices can then present either hole or electron mobility gaps of the order of the eV. Massive integration and complex architectures of active and passive components could be realized by doping different localized areas of a single graphene sheet selectively, thus paving the way towards a mainstream carbon-based nanoelectronics. We also analyze the strong limitations of using ultranarrow graphene nanoribbons with a significant bandgap as an alternative route, due to the impact of edge disorder which leads to a degradation in the conductance properties.
Journal title :
Physica E Low-dimensional Systems and Nanostructures
Journal title :
Physica E Low-dimensional Systems and Nanostructures