• Title of article

    Inferring the eigenvalues of covariance matrices from limited, noisy data

  • Author/Authors

    R.، Everson, نويسنده , , S.، Roberts, نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    -2082
  • From page
    2083
  • To page
    0
  • Abstract
    The eigenvalue spectrum of covariance matrices is of central importance to a number of data analysis techniques. Usually, the sample covariance matrix is constructed from a limited number of noisy samples. We describe a method of inferring the true eigenvalue spectrum from the sample spectrum. Results of Silverstein (1986), which characterize the eigenvalue spectrum of the noise covariance matrix, and inequalities between the eigenvalues of Hermitian matrices are used to infer probability densities for the eigenvalues of the noise-free covariance matrix, using Bayesian inference. Posterior densities for each eigenvalue are obtained, which yield error estimates. The evidence framework gives estimates of the noise variance and permits model order selection by estimating the rank of the covariance matrix. The method is illustrated with numerical examples
  • Keywords
    Hydrograph
  • Journal title
    IEEE TRANSACTIONS ON SIGNAL PROCESSING
  • Serial Year
    2000
  • Journal title
    IEEE TRANSACTIONS ON SIGNAL PROCESSING
  • Record number

    104966