Title of article :
The joint MAP-ML criterion and its relation to ML and to extended least-squares
Author/Authors :
A.، Yeredor, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
-3483
From page :
3484
To page :
0
Abstract :
The joint maximum a posteriori-maximum likelihood (JMAP-ML) estimation criterion can serve as an alternative to the maximum likelihood (ML) criterion when estimating parameters from an observed data vector whenever another unobserved data vector is involved. Rather than maximize the probability of the observed data with respect to the parameters, JMAPML maximizes the joint probability of the observed and unobserved data with respect to both the unknown parameters and the unobserved data. In this paper, we characterize the relation between the ML and JMAP-ML estimates in the Gaussian case and provide insight into the apparent bias of JMAP-ML. Although JMAP-ML is an inconsistent estimator, we show that with short data records, it is often preferable to ML in terms of both bias and variance. We also identify JMAP-ML as a special case of the deterministic extended least squares (XLS) criterion. We indicate a general relation between a possible maximization algorithm for JMAP-ML and the well-known estimation-maximization (EM) algorithm.
Keywords :
Hydrograph
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Serial Year :
2000
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Record number :
105062
Link To Document :
بازگشت