Title of article :
Strain effects on optical properties of pyramidal InAs/GaAs quantum dots
Author/Authors :
M.K. Kuo، نويسنده , , T.R. Lin، نويسنده , , B.T. Liao، نويسنده , , C.H. Yu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Abstract :
Strain distribution and optical properties in a self-assembled pyramidal InAs/GaAs quantum dot grown by epitaxy are investigated. A model, based on the theory of linear elasticity, is developed to analyze three-dimensional induced strain field. In the model, the capping material in the heterostructure is omitted during the strain analysis to take into account the sequence of the fabrication process. The mismatch of lattice constants is the driving source of the induced strain and is treated as initial strain in the analysis. Once the strain analysis is completed, the capping material is added back to the heterostructure for electronic band calculation. The strain-induced potential is incorporated into the three-dimensional steady-state Schrödinger equation with the aid of Pikus–Bir Hamiltonian with modified Luttinger–Kohn formalism for the electronic band structure calculation. The strain field, the energy levels and wave functions are found numerically by using of a finite element package FEMLAB. The energy levels as well as the wave functions of both conduction and valence bands of quantum dot are calculated. Finally, the transition energy of ground state is also computed. Numerical results reveal that not only the strain field but also all other optical properties from current model show significant difference from the counterparts of the conventional model.
Keywords :
Quantum dots , Induced strain , Pikus–Bir Hamiltonian , InAs/GaAs , Lattice constants mismatch
Journal title :
Physica E Low-dimensional Systems and Nanostructures
Journal title :
Physica E Low-dimensional Systems and Nanostructures