Title of article :
A COMPARATIVE STUDY ON ISAR IMAGING ALGORITHMS FOR RADAR TARGET IDENTIFICATION
Author/Authors :
By J.-I. Park and K.-T. Kim ، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
21
From page :
155
To page :
175
Abstract :
Inverse synthetic aperture radar (ISAR) images represent the two-dimensional (2-D) spatial distribution of the radar cross-section (RCS) of an object and, thus, they can be applied to the problem of target identification. The traditional approach to ISAR imaging is the range-Doppler algorithm based on the 2-D Fourier transform. However, the 2-D Fourier transform often results in poor resolution ISAR images, especially when the measured frequency bandwidth and angular region are limited. Instead of the Fourier transform, high resolution spectral estimation techniques can be adopted to improve the resolution of ISAR images. These are the autoregressive (AR) model, multiple signal classification (MUSIC), and matrix enhancement and matrix pencil MUSIC (MEMP-MUSIC). In this study, the ISAR images from these high-resolution spectral estimators, as well as the FFT approach, are identified using a recently developed identification algorithm based on the polar mapping of ISAR images. In addition, each ISAR imaging algorithm is analyzed and compared in the framework of radar target identification. The results show that the dynamic range as well as the resolution of the ISAR images plays an important role in the identification performance. Moreover, the optimum size of the subarray (i.e. covariance matrix) for MUSIC and MEMP-MUSIC in terms of target identification is experimentally derived.
Journal title :
Progress In Electromagnetics Research
Serial Year :
2010
Journal title :
Progress In Electromagnetics Research
Record number :
1052449
Link To Document :
بازگشت