Author/Authors :
By T. Eudes، نويسنده , , B. Ravelo، نويسنده , , and A. Louis ، نويسنده ,
Abstract :
This paper is devoted on the characterization method of RF/digital PCB interconnections for the prediction of the high-speed signal transient responses. The introduced method is based on the use of the interconnection line RLCG-model. Theoretical formulae enabling the extraction of the electrical per-unit length parameters R, L, C and G in function of the interconnection line physical characteristics (width, length, metal conductivity, dielectric permittivity ...) are established. Then, by considering the second order approximation of the interconnection RLCG-model transfer matrix, the calculation process of the transient responses from the interconnection system transfer function is originally established. To demonstrate the relevance of the proposed model, microwave-digital interconnection structure comprised of millimetre microstrip line driven and loaded by logic gates which are respectively modelled by their input and output impedances was considered. Then, comparisons between the SPICE-computation results and those obtained from the proposed analytical model implemented in Matlab were made. As results, by considering a periodical square microwave-digital excitation signal with 2 Gbits/s rate, transient responses which are very well-correlated to the SPICE-results and showing the degradation of the tested signal fidelity are observed. The numerical computations confirm that the proposed modelling method enables also to evaluate accurately the transient signal parameters as the rise-/fall-times and the 50% propagation delay in very less computation time. For this reason, this analytical-numerical modelling method is potentially interesting for the analysis of the signal integrity which propagates in the high-speed complex interconnection systems as the clock tree distribution networks. In the continuation of this work, we would like to apply the proposed modelling process for the enhancement of signal quality degraded by the RF/digital circuit board interconnection where the signal delays and losses became considerably critical.