Title of article :
HYBRID-SURROGATE-MODEL-BASED EFFICIENT GLOBAL OPTIMIZATION FOR HIGH-DIMENSIONAL ANTENNA DESIGN
Author/Authors :
By L.-L. Chen، نويسنده , , C. Liao، نويسنده , , W. Lin، نويسنده , , L. Chang، نويسنده , , and X.-M. Zhong ، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2012
Pages :
16
From page :
85
To page :
100
Abstract :
Efficient global optimization has been extensively used in problems with expensive cost functions. However, this method is not suitable for high-dimensional problems. In this paper, the radial basis function network is introduced into the efficient global optimization, to avoid local optima and achieve a fast convergence for high-dimensional optimization. Our algorithm is applied to a 12-dimensional optimization of a transmitting antenna. Compared to the genetic-algorithm-based efficient global optimization and the differential evolution strategy, our algorithm converges to the global optimal value more efficiently.
Journal title :
Progress In Electromagnetics Research
Serial Year :
2012
Journal title :
Progress In Electromagnetics Research
Record number :
1052893
Link To Document :
بازگشت