Title of article :
Intermolecular hydrogen bonding in chlorine dioxide photochemistry: A time-resolved resonance Raman study Original Research Article
Author/Authors :
Matthew J. Philpott، نويسنده , , Sophia C. Hayes، نويسنده , , Carsten L Thomsen، نويسنده , , Philip J. Reid، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2001
Pages :
12
From page :
389
To page :
400
Abstract :
The geminate-recombination and vibrational-relaxation dynamics of chlorine dioxide (OClO) dissolved in ethanol and 2,2,2-trifluoroethanol (TFE) are investigated using time-resolved resonance Raman spectroscopy. Stokes spectra are measured as a function of time following photoexcitation using degenerate pump and probe wavelengths of 398 nm. For OClO dissolved in ethanol, subpicosecond geminate recombination occurs resulting in the reformation of ground-state OClO with a quantum yield of 0.5±0.1. Following recombination, intermolecular-vibrational relaxation of OClO occurs with a time constant of 31±10 ps. For OClO dissolved in TFE, recombination occurs with a time constant of 1.8±0.8 ps and a quantum yield of only 0.3±0.1. The intermolecular-vibrational-relaxation time constant of OClO in TFE is 79±27 ps. The reduced geminate-recombination quantum yield, delayed recombination, and slower vibrational relaxation for OClO in TFE is interpreted in terms of greater self-association of the solvent. Degenerate pump–probe experiments are also presented that demonstrate decay of the Cl-solvent charge-transfer complex on the ∼1-ns time scale in ethanol and TFE. This time is significantly longer than the abstraction times observed for other systems demonstrating that Cl hydrogen abstraction from alcohols occurs in the presence of a significant energy barrier.
Journal title :
Chemical Physics
Serial Year :
2001
Journal title :
Chemical Physics
Record number :
1056089
Link To Document :
بازگشت