Title of article :
Facile route to the synthesis of porous α-Fe2O3 nanorods
Author/Authors :
Saikat Mandal، نويسنده , , Axel H.E. Müller، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
6
From page :
438
To page :
443
Abstract :
The requirements of simple and reliable protocols for the synthesis of anisotropic structures with controlled morphology continue to be a major challenge in nanoscience. In this paper we describe the facile synthesis of porous hematite (α-Fe2O3) nanorods using anionic surfactant as a rod-like template. α-FeOOH nanorods with diameters of 170–210 nm and lengths up to 3–5 μm were synthesized in high yield via hydrothermal method using sodium dodecyl sulphate as a template. The porous α-Fe2O3 was obtained after solvent extraction and calcining the as-obtained α-FeOOH nanorods at 500 °C for 6 h. Even after removal of template by solvent extraction and calcination the shape of the nanorods was intact except the generation of pores on the nanorods. The porous nanorods were analysed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission and high-resolution transmission electron microscopy (TEM & HRTEM), scanning electron microscopy (SEM) and superconducting quantum interference device (SQUID) measurements. SEM and TEM images showed that the morphology of hematite nanostructure is homogeneous in the shape of rods and full of porosity and magnetization measurements of the porous α-Fe2O3 nanorods showed weak ferromagnetic behavior. The surfactant SDS (sodium dodecyl sulphate) plays a key role in controlling the nucleation and growth of the nanorods and their use as a new class of inorganic scaffolds for the synthesis of nanomaterials are salient features of the work with implications in crystal engineering and nanocomposites design for various applications.
Keywords :
Magnetic materials , Iron oxide , Porous materials , Template synthesis
Journal title :
Materials Chemistry and Physics
Serial Year :
2008
Journal title :
Materials Chemistry and Physics
Record number :
1066201
Link To Document :
بازگشت