• Title of article

    Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process

  • Author/Authors

    M. Koohbor، نويسنده , , S. Soltanian، نويسنده , , M. Najafi Ghiri، نويسنده , , P. Servati، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2012
  • Pages
    7
  • From page
    728
  • To page
    734
  • Abstract
    Highly ordered arrays of Co1−xZnx (0 ≤ x ≤ 0.74) nanowires (NWs) with diameters of ∼35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 °C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on the magnetic properties of the NW arrays. The changes in magnetic property of NWs are rooted in a competition between shape anisotropy and magnetocrystalline anisotropy in NWs.
  • Keywords
    CoZn nanowire arrays , Electrodeposition , AAO template , Magnetic properties
  • Journal title
    Materials Chemistry and Physics
  • Serial Year
    2012
  • Journal title
    Materials Chemistry and Physics
  • Record number

    1066601