Title of article :
An artificial neural network model for toughness properties in microalloyed steel in consideration of industrial production conditions
Author/Authors :
M. C?l، نويسنده , , H.M. Ertunc، نويسنده , , M. Yilmaz، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2007
Pages :
8
From page :
488
To page :
495
Abstract :
The mechanical properties of an API X65 microalloyed steel were investigated with industrial thermomechanical experiments. The many parameters of processes obtained during production on the plant were systematically changed to optimise the strength and toughness properties. Among these parameters, parameters taking part in secondary metallurgy, such as used collemanite amount for slag formation, or stirring time for reducing of the non-metallic inclusions, which are not viguriously investigated in general, are included in the modelling. The optimised parameters were used for the production of the API X65 steel. However, it is not easy to determine as to what parameters under which conditions influence the toughness properties of the material. Therefore, in this study, a generalised regression neural network was developed to predict the impact energy as a function of experimental conditions. The predicted values of the impact energy using the neural network are found to be in good agreement with the actual values from the experiments.
Keywords :
Toughness properties , Artificial neural network , Regression neural network , Microalloyed steel
Journal title :
Materials and Design
Serial Year :
2007
Journal title :
Materials and Design
Record number :
1067386
Link To Document :
بازگشت