Title of article :
Artificial neural network approach to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys
Author/Authors :
Mehmet Sirac Ozerdem، نويسنده , , Sedat Kolukisa، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2009
Abstract :
In this study, an artificial neural network approach is employed to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys. In artificial neural network (ANN), multi layer perceptron (MLP) architecture with back-propagation algorithm is utilized. In Artificial Neural Network training module, Cu–Sn–Pb–Zn–Ni (wt%) contents were employed as input while yield strength, tensile strength and elongation were employed as outputs. ANN system was trained using the prepared training set (also known as learning set). After training process, the test data were used to check system accuracy. As a result of the study neural network was found successful for the prediction of yield strength, tensile strength and elongation of Cu–Sn–Pb–Zn–Ni alloys.
Keywords :
Artificial neural network , Prediction of mechanical properties , Cu–Sn–Pb–Zn–Ni cast alloys
Journal title :
Materials and Design
Journal title :
Materials and Design