Title of article
Cutting tool material selection using grey complex proportional assessment method
Author/Authors
Saikat Ranjan Maity، نويسنده , , Prasenjit Chatterjee، نويسنده , , Shankar Chakraborty، نويسنده ,
Issue Information
ماهنامه با شماره پیاپی سال 2012
Pages
7
From page
372
To page
378
Abstract
In today’s metalworking industry, many types of materials, ranging from high carbon steel to ceramics and diamonds, are used as cutting tools. Because of the wide range of conditions and requirements, no single cutting tool material meets all the needs of machining applications. Each tool material has its own properties and characteristics that make it best for a specific machining application. While evaluating a cutting tool material for a machining operation, the applicability is dependant on having the correct combination of its physical properties. Thus, it is extensively important to select the most appropriate cutting tool material with the desired properties for enhanced machining performance. This paper considers an exhaustive list of 19 cutting tool materials whose performance are evaluated based on ten selection criteria. The grey complex proportional assessment (COPRAS-G) method is then applied to solve this cutting tool material selection problem considering grey data in the decision matrix. Synthetic single crystal and polycrystal diamonds emerge out as the best two choices. Oil quenched tool steel (AISI O2) and powder metal tool steel (AISI A11) may also be used as the suitable cutting tool materials. Sialon and sintered reaction bonded silicon nitride are the worst chosen cutting tool materials.
Journal title
Materials and Design
Serial Year
2012
Journal title
Materials and Design
Record number
1072529
Link To Document