Title of article :
Structural analysis of continuous fiber wound composite impellers of a multistage high-speed counter rotating axial compressor for compressing water vapor (R-718) as refrigerant using Finite Element Analysis
Author/Authors :
Mohit Patil، نويسنده , , Norbert Müller، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2013
Pages :
11
From page :
683
To page :
693
Abstract :
In this study a low cost, light weight and high performance novel filament wound axial impeller of a multistage counter rotating axial compressor for compressing water vapor (R718) as refrigerant is investigated structurally. Three different fiber types were chosen as suitable materials for this study (Kevlar-49, S-Glass & Carbon fiber) with a standard epoxy resin for the composite matrix. Through means of FEA (Finite Element Analysis) method; stress, displacement and vibration analysis procedure is developed to assess the maximum stress, change in dimensions and natural frequencies of these impellers under constant operating conditions. The finite element modeling was performed on commercially available software Abaqus. The modeling technique is explained in detail with regards to static structural and dynamic analysis of the impellers. Operating stresses, maximum shroud deflections, modal frequencies and effect of centrifugal stiffening is calculated and discussed in detail along with Campbell plots for each fiber material type. The study provides critical details about the structural behavior of the impellers and aims to provide a methodology to the compressor designer to support his decision in choosing the type of impeller and designing the housing.
Journal title :
Materials and Design
Serial Year :
2013
Journal title :
Materials and Design
Record number :
1073317
Link To Document :
بازگشت