Title of article :
Reactants flow behavior and water management for different current densities in PEMFC
Author/Authors :
Dewan Hasan Ahmed، نويسنده , , Hyung Jin Sung، نويسنده , , Joongmyeon Bae، نويسنده , , Dong-Ryul Lee، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
14
From page :
2006
To page :
2019
Abstract :
Computational fluid dynamics analysis was carried out to investigate the reactants flow behavior and water management for proton exchange membrane fuel cell (PEMFC). A complete three-dimensional model was chosen for single straight channel geometry considering both anode and cathode humidification. Phase transformation was included in the model to predict the water vapor and liquid water distributions and the overall performance of the cell for different current densities. The simulated results showed that for fully humidified conditions hydrogen mole fraction increases along the anode channel with increasing current density, however, at higher current densities it decreases monotonically. Different anode and cathode humidified conditions results showed that the cell performance was sufficiently influenced by anode humidification. The reactants and water distribution and membrane conductivity in the cell depended on anode humidification and the related water management. The cathode channel–GDL (Gas Diffusion Layer) interface experiences higher temperature and reduces the liquid water formation at the cathode channel. Indeed, at higher current densities the water accumulated in the shoulder area and exposed higher local current density than the channel area. Higher anode with lower cathode humidified combination showed that the cell had best performance based on water and thermal management and caused higher velocity in the cathode channel. The model was validated through the available literature.
Journal title :
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Serial Year :
2008
Journal title :
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Record number :
1075354
Link To Document :
بازگشت