Title of article :
Electrospray cooling for microelectronics
Author/Authors :
Weiwei Deng، نويسنده , , Alessandro Gomez، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
2270
To page :
2275
Abstract :
The challenge of effectively removing high heat flux from microelectronic chips may hinder future advancements in the semiconductor industry. Spray cooling is a promising solution to dissipate high heat flux, but traditional sprays suffer from low cooling efficiency partly because of droplet rebound. Here we show that electrosprays provide highly efficient cooling by completely avoiding the droplet rebound, when the electrically charged droplets are pinned on the heated conducting surface by the electric image force. We demonstrate a cooling system consisting of microfabricated multiplexed electrosprays in the cone-jet mode generating electrically charged microdroplets that remove a heat flux of 96 W/cm2 with a cooling efficiency reaching 97%. Scale-up considerations suggest that the electrospray approach is well suited for practical applications by increasing the level of multiplexing and by preserving the system compactness using microfabrication.
Keywords :
Electrospray , MEMS , Spray cooling
Journal title :
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Serial Year :
2011
Journal title :
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Record number :
1077243
Link To Document :
بازگشت